算力设计。这玩意儿,最初是出现在很多硅谷it公司,那些程序员嫌弃代码写好后、编译速度太慢,甚至觉得光靠专门的编译服务器都不够用,所以天马行空地创新出一个“分布式编译架构”,让一家公司里所有同一局域网内的电脑,都可以加入这个架构,然后把编译任务拆分分配给所有电脑,让所有pu共同分包编译。分布式编译是从07年出现的,一两年之内,这玩意儿就成长成了“云计算”。有了云计算之后,应用就很广泛,而云计算对人工智能训练的最大影响,就是某个智能在执行机器学习的时候,不用再受限于这个机器人本身那颗pu的算力了——机器人自己的pu不够快,可以接入云,用云上的几千几万台机器的pu帮你一起算。这时候,摩尔定律就不重要了。只要算力任务能高效拆分,单颗pu弱一点就弱一点了,咱可以芯海战术堆数量嘛。如此一来,其他那些“算力效率更高、白盒可解释性更强、但训练上限和自动化程度更低的算法”,一下子就争不过深度学习了。因为深度学习原先最大的瓶颈,就是黑盒,算力效率低下。但云计算的出现,让算力瞬间没那么值钱了,可以大水漫灌狂训你。……这些道理,顾玩心知肚明,不过他没法全部告诉麻依依。他只能鼓励麻依依,让她往这个领域布局,夫妻俩暂时把外围科技先凑起来。幸好,时间上也不是非常紧急。地球上杰夫辛顿让学界接受深度学习,就花了两年。至于后来从学界承认到产业界承认,又花了四年——其中三年都是在等云计算的出现。他的成绩06年在学界就初步被认可了,但09年云计算才正式出现,2010年杰夫辛顿才被谷歌高薪挖走。后世的人工智能,用一句话概括运作原理,就是“使用云计算的算力,用深度学习算法处理学习大数据”。算力,算法,大数据。三要素里,从技术难度来说,最先有的是大数据,这是一种资源,有稀缺性,但却没有技术含量,所以是最早出现的。算法,或者说深度学习的思路,是第二个出现的(06年)用这种算法处理这些数据的算力,是最后出现的(09年)三要
本章未完,请点击"下一页"继续阅读! 第3页 / 共5页