设置

关灯

第101章 疯狂的数学菜鸟(第15节)

杂高维代数曲线上的有理点数量的上界估计提供扎实的理论依据。

证明了第一步之后,就是找到这个常数C的公式,并证明这个公式正确的。

然后——问题解决!

不过当乔喻满怀壮志的准备证明这个命题的时候,突然觉得他提出的这个问题好像有那么点无从下手。

他似乎陷入了把大象放入冰箱需要几步的怪圈。

第一步,打开冰箱门,第二步,把大象放进去,第三步,关冰箱门。

唯一的问题是,他好像还没找到有大象那么大的冰箱!

尤其是乔喻突然发现,即便这个常数C公式真的存在,那它将不仅依赖于曲线的几何性质,还可能依赖于数域 K的特性、曲线的模形式结构甚至其他代数几何工具。

因为他绞尽脑汁之后,乔喻发现现有的代数几何工具,似乎并不支持能把这个C给找到。

如果换了一个正常数学人大概这个时候就会选择放弃了,但乔喻不太一样,他只是一个数学菜鸟,而且已经把这项挑战当成了一个游戏。

虽然没有头绪,但万一成功了?

而且还是那句话,没有工具,完全可以自己造嘛。

想当年彼得·舒尔茨才21岁,就能生造出一套如此牛逼的理论框架来,没道理他十五岁,就不能创造出几个能用的数学工具了,更别提整个理论框架都是人家提供的,他只需要在框架下进行二次创造,难度明显小的多。

毕竟规则都已经摆在那里,他只需要在这个框架规则的限定下,通过严谨的数学逻辑证明他的工具没错就够了。

所以接下来的工作又能进一步简化了,什么样的代数几何工具能帮他证明这个常数C存在。

乔喻愁眉苦脸的想了很久,然后再次确定了,首先他需要一个新的同调范畴工具。

于是稿纸上又出现了一排字迹:

“同调范畴 QH(Cp)是一个增强的同调范畴,定义在代数曲

本章未完,请点击"下一页"继续阅读! 第15页 / 共16页