设置

关灯

第076章:固态晶格能量电池(5000字)(第3节)

其基础材料是基于稀土元素氧化物的特殊超离子导体,该材料在原子/分子尺度上具有类似“手性螺旋通道”的非平凡拓扑结构。

这种结构拓扑通道为离子提供了极低势垒的迁移路径,即使在室温下也能实现接近液态电解质的离子电导率。

拥有完美的电子绝缘性,防止内部短路。

拓扑通道的尺寸和化学环境经过陆安的精确设计,实现只允许特定大小和电荷的阳离子高效通过,阻挡其他离子和电子。

固态晶格能量电池的整体结构,负极集流体具有微通道结构的惰性导电材料用于容纳和引导液态金属流动,并提供电子通路;复合正极层由高容量多电子反应活性材料、拓扑离子导体骨架/包覆层和导电添加剂混合压制而成。

液态金属负极浸润在负极集流体的孔隙通道中,固态电解质层是致密、超薄的拓扑离子导体隔膜。

固态晶格能量电池制造工艺则是另一大核心科技。

其一是拓扑离子导体(TIC)的合成,陆安的解决方案是分子级拓扑结构引导外延沉积。

具体上,可以使用超高真空、超精密控制的分子束外延,在特定纳米图案如手性螺旋、分形结构的点阵列模板进行沉积。

沉积过程中,需要精确调控能量束流,可用离子束或激光干涉,诱导沉积材料中的物质按照预设的拓扑构型进行排列和键合。

最终形成具有宏观尺寸、完美三维拓扑离子通道网络的单晶或多晶薄膜,模板可在后续步骤中温和去除或转化为材料的一部分。

电池的复合正极制备是将氟代聚阴离子前驱体、硫源、拓扑离子导体粉末、导电剂按精确比例混合。

在特定气氛下进行拓扑结构引导烧结/热处理,该过程利用TIC粉末自身的拓扑特性,引导活性物质在其表面或孔道内结晶生长,形成紧密结合的复合结构,最后压制成型。

而负极集流体的处理则是对多孔集流体进行表面改性

本章未完,请点击"下一页"继续阅读! 第3页 / 共8页