四个公设来证明第五公设?这就是几何发展史上最著名的,争论了长达两千多年的关于“平行线理论”的讨论。由于证明第五公设的问题始终得不到解决,人们逐渐怀疑证明的路子走的对不对?第五公设到底能不能证明?
1820年代,俄国喀山大学教授罗巴切夫斯基在证明第五公设的过程中,他走了另一条路子。他提出了一个和欧氏平行公理相矛盾的命题,用它来代替第五公设,然后与欧氏几何的前四个公设结合成一个公理系统,展开一系列的推理。他认为如果这个系统在基础的推理中出现矛盾,就等于证明了第五公设。此即数学中的反证法。但是,在他极为细致深入的推理过程中,得出了一个又一个在直觉上匪夷所思,但在逻辑上毫无矛盾的命题。最后,罗巴切夫斯基得出两个重要的结论:第一,第五公设不能被证明。第二,在新的公理体系中展开的一连串推理,得到了一系列在逻辑上无矛盾的新的定理,并形成了新的理论。这个理论像欧氏几何一样是完善的、严密的几何学。这种几何学被称为罗巴切夫斯基几何,简称罗氏几何。这是第一个被提出的非欧几何学。从罗氏几何学中,可以得出一个极为重要的、具有普遍意义的结论:逻辑上互不矛盾的一组假设都有可能提供一种几何学。
按几何特‘性’(曲率),现存非欧几何的类型可以概括如下:坚持第五公设,引出欧几里得几何。以“可以引最少两条平行线”为新公设,引出罗氏几何(或称双曲面几何)。以“一条平行线也不能引”为新公设,引出黎曼几何(或称椭圆几何)。如果完全去掉第五公设,就得到更加一般化的绝对几何。这种几何不仅可以囊括前面提到的三种几何,而且允许空间的不同位置有不同的曲率。
司空斯基琢磨出来的方法是在打印机中制造不同密度(曲率)的二维织物,当完整的各部分曲率不同的织物打印出来之后,人们就会豁然发现这件织物竟然成了一件没有任何接缝的试衣服!
由二维变三维的曲率计算极其复杂,司空斯基仅仅是有一
本章未完,请点击"下一页"继续阅读! 第8页 / 共9页