哈代在他的《一个数学家的辨白》也对这个证明津津乐道。随着数学慢慢发展,人们渐渐意识到素数在自然数的分布具有一定的规律。随着数量级的增大,素数的密度越来越小。例如,100以内有25个素数。占到25%。而100万以内的素数只有7.85%。尽管素数的分布越来越稀疏,但其稀疏程度却是可以度量的。”
“素数的分布律说明,素数在自然数越来越稀疏,同时素数之间的距离——平均而言——会越来越远。因此,孪生素数猜想也就显得很越发奇妙。如果素数之间的距离真的越来越远,那么出现无穷对距离为2的素数就不是那么显然的事了。这似乎说明素数的分布是相当随机的,而不是近似均匀的扩散。这一结论与概率论随时间推移,一维标准布朗运动的位置平均而言离0读越来越远。但却以概率1无穷次折回0读有着异曲同工之妙。素数的分布律与随机过程非常相似。然而,更为奇妙的是。素数的位置是完全是确定的,其本质上毫无随机性。”
乔布斯听的很仔细,问道:“素数的位置是完全确定的,毫无随机性,那么你刚才怎么又说素数的分布是相当随即的?”乔布斯本来就是极致的偏执狂,听着库伯介绍顿时来了兴趣,略一思索顿时疑窦大生。
这也是哥德巴赫猜想遇到的问题,也就是为什么当时孔继道了解了刘猛在数论提出的离散随即理论的确定性时认定这是解决问题的关键。
库伯不好意思摇摇头,“这个我就不清楚了,我只是把知道的情况记了下来,并没有完全理解,抱歉,乔布斯先生。”
乔布斯也不怪他,“哦,没关系,你继续说吧。”
“而这位神奇的刘猛先生就是证明了存在无穷多对素数,其差小于7000万。尽管7000万是个很大的数字,但如果结果成立,就是第一次有人正式证明存在无穷多组间距小于定值的素数对。既然素数之间的平均距离越来越远,那么存在无穷多组间距小于定值的素数对,与存在无穷多组间距为2的素数对(孪生素数猜想)是一样神奇的结论。值得一提,
本章未完,请点击"下一页"继续阅读! 第4页 / 共6页