设置

关灯

419 回国,点球的博弈论(第4节)

动一定会有些许了解。

在那一瞬间,我相信那是一个典型的二人博弈情境。

梅西再次将球踢向了自己右侧,但不幸的是球击中了门楣,阿根廷队在三年中第三次无缘冠军。

如果梅西始终无法带领阿根廷在国际赛场上斩获冠军,他还能否被称为史上最佳这个问题尚有待讨论的话,那么这支阿根廷不配被称为世界足坛的无冕之王这一命题应该是没有异议的。

1954年的匈牙利队完全对得起无冕之王的称号——但是1954年的瑞士世界杯决赛并没有进入到点球大战环节。

然后是1974年由约翰·克鲁伊夫领衔的荷兰队。

另外一位匈牙利人冯·诺依曼(译注:20世纪最重要的数学家之一,在现代计算机、博弈论、核武器和生化武器等诸多领域内有杰出建树的伟大科学家,被后人称为“计算机之父”和“博弈论之父”。1944年与摩根·斯特恩合著《博弈论与经济行为》,是博弈论学科的奠基性著作)很可能对足球没有任何兴趣,但他肯定意识到了匈牙利队是多么成功的一支球队。

但是关于他是否在研究“极小极大定理”时考虑到了点球博弈,这个我们不得而知。

1928年,诺依曼发表了一篇论文《客厅游戏的理论》,被视为博弈论的开山之作。

该理论的大致含义是:在一场零和博弈中(译注:又称零和游戏,与非零和博弈相对,是博弈论的一个概念,属非合作博弈。指参与博弈的各方,在严格竞争下,一方的收益必然意味着另一方的损失,博弈各方的收益和损失相加总和永远为“零”,双方不存在合作的可能),双方具有完美信息(译注:所谓完美信息,指轮到行动的局中人知道先前的行动的其他局中人采取了什么策略,比如在2016年的百年美洲杯决赛中,布拉沃知道梅西之前所做的决策),两方可以采取相应的对策来使自己的损失减到最小。

当考虑自己可以采用的每一个策略时,一方必须考虑到

本章未完,请点击"下一页"继续阅读! 第4页 / 共6页