但对它加以改进并引入到素数对问题中的却是他自己。
再到后来陆舟在此基础上引入了群论的知识,将有限距离的素数对推到无限,在此基础上解决了波利尼亚克猜想,这种方法已经被两次魔改改造的面目全非,完全偏离了筛法的原貌。
因此陆舟给这把属于自己的武器刻上了一个新的名字,即“群构法”。
但是在思考哥德巴赫猜想的时候,惯性思维却让他选择性地忽略掉了自己的工具。
表面上看群构法似乎和哥德巴赫猜想没有任何关系,但从根源上它正是从筛法演变而来,并且始终为解决素数问题而去。
只要加改进,未必不可以将这项工具,用于同为素数问题的哥德巴赫猜想上。
当这种数学方法被不断的完善,完善到足以解决很多问题,完善到从牙签变成了瑞士军刀,它的意义可能便不再是一种单纯工具,而是逐渐演变成一种理论框架!而且是解析数论中的理论框架!
就像数学界有名的“中二病”望月新一,在研究ab猜想时创造的“宇宙际teihuller理论”和“外星算数全纯结构”一样。
无论是先建立理论再去证明理论的价值,还是在研究具体数学问题的同时发展出新颖的理论,都是有先例可循的。
从哥德巴赫猜想中,陆舟隐约看到了希望。
……
从饮食俱乐部出来之后,陆舟没有像往常一样,吃完饭后去图书馆待一会儿,而是去了普林斯顿高等研究所。
虽然他并没有预约,但根据德林教授自己的说法,不出意外的话,每天晚上6点到8点的这段时间里他都会在这里。
敲开办公室的门,陆舟走了进去。
停下了手中的圆珠笔,德利涅教授看向了站在办公桌对面的陆舟,语气轻松的问道。
“你已经考虑好了?”
陆舟点了点头,说道。
“是的,我打算继续完成自己的研究……很抱歉,我可能没法抽出多余的精力加入您的课题。”
德利涅点了点头,并没有因此而产生不满。
坐在他这个位置,很难像一般博士生的老板那样心胸狭窄,用一些无聊的考验试探学生
本章未完,请点击"下一页"继续阅读! 第3页 / 共4页