回头面向了寂静一片的会场,缓缓开口说道。
“到这里,关于黎曼zeta函数的非平凡零点的分布问题,我们已经可以用一句肯定的陈述去回答。即,黎曼zeta函数的所有非平凡零点都位于复平面上re(s)=1/2的直线上。”
“证明到这里已经结束了,未尽探索也在这里终于走到了尽头。然而,关于未来的探索却才刚刚开始,这个世界上仍然存在着许多我们不知道该如何去回答的问题。”
“比如作为狄利克雷l级数的解析延拓,狄利克雷l函数的所有非平凡零点是否同样位于复平面re(s)=1/2的直线上?以及自守l函数又如何呢?这些深刻的问题我们仍然无法给出一个肯定的回答。”
“历史的经验告诉我们,每当我们解决一个麻烦,一定会有更多的麻烦在后面等待着我们。但我认为,这一定是一个幸福的烦恼,而我们的学术也正是因此而繁荣。”
说到这里,陆舟顿了顿,继续说道。
“有些话我原本是打算等到学界对我的论文给出一个明确的定性之后再说的,不过……在我看来其实没什么区别。”
寂静的会场鸦雀无声。
从那寂静无声的沉默中感受到了那份沉甸甸的认同,陆舟轻轻点了下头,回应着所有期待的眼神,提高了音量继续说道。
“回答先前那位朋友的提问,黎曼猜想完成之后,解析数论会何去何从?”
“我的答案是,这门古老的学科一定会发焕发出全新的活力,变得比以往更加繁荣。”
“至于我自己,也许会去研究狄利克雷l函数以及关于黎曼猜想的推广……也就是广义黎曼猜想,也可能和我的朋友去研究黎曼zeta函数非平凡零点的对关联函数背后的物理意义,这听起来的同样足够激动人心。”
“当然,其实我个认,更倾向于一个更宏大的命题。”
停顿了大概三秒钟,环视了一圈会场里那一双双汇聚在自己身上的目光,已经卸下所有担子的陆舟,深呼吸了一口气,用轻松地口吻说出了那句他早就想说的话。
“……即,统一代数与几何!”
几乎就在陆舟
本章未完,请点击"下一页"继续阅读! 第4页 / 共5页