设置

关灯

第118章 三种解法(第2节)

学用相似三角形,证明了如果AD和BE交于点G,那么AG是 G· D的两倍,BG是GE的两倍。这让我想到……平衡。”

“平衡?”苏晓柔眨了眨眼睛,对这个词用在几何证明上感到新奇。

“嗯。”聂虎点点头,手指点在G点的位置,“如果G是三条中线的交点,那么,从A、B、C三个顶点到这个点的‘影响力’,是不是应该有种平衡?就像……”他努力寻找着合适的比喻,“就像一根扁担,挑着两个重量一样的筐,支点就在正中间,两边平衡。现在有三个点,它们的‘重量’如果一样,那平衡点应该在哪里?”

苏晓柔听得有些入神,这个比喻虽然粗糙,但似乎触及了某种本质。她顺着聂虎的思路想下去:“三个顶点,可以看成三个质点数……如果质量相等,那么它们的重心,或者说质心,确实应该是中点连线的交点。但这需要用到物理或者更深的数学知识了吧?我们还没学过。”

“是不懂那些。”聂虎坦然承认,“但我看这个图,”他用笔尖从A点到D点画了一条线,“AD是A到BC中点的连线。我在想,如果我把整个三角形,看成从A点‘长’出来的,那么D点就是BC这条‘边’的中间。假设每条边都有一种‘拉力’或者‘影响力’,从顶点指向对边的中点,那么三条这样的‘力线’的交点,应该就是整个图形最‘稳’的那个点。这个点,到三个顶点的‘距离’,和到三边的‘距离’,可能有一种特别的比例关系,让整体达到一种……均衡。”

他说得有些磕绊,用了很多自己创造的、不太准确的词汇,如“影响力”、“拉力”、“稳”、“均衡”,但这并非物理上的力学概念,而是他结合“虎踞”桩功中对身体重心、力量平衡的感悟,以及对山中岩石、树木生长态势的观察,形成的一种模糊的、基于直觉和图像的空间想象。他将三角形看成了一个有“重心”的实体,三条中线则是维持其平衡的关键“骨架线”,交点则是“重心”所在。

苏晓柔起初听得有些困

本章未完,请点击"下一页"继续阅读! 第2页 / 共8页